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1. INTRODUCTION

Since the first completions of segmental bridges in the 1950’s and 1960’s in
Europe, and in the 1970’s in the United States, design and construction of segmental
prestressed concrete box girder bridges has become a predominant form of medium
and long-span bridge construction (100 to 650 feet span), and has been character-
ized by rapid evolution. Economic factors have continually suggested refinements in
construction practices to increase productivity and minimize construction time. Each
of these developments in construction methods has required innovative design proce-
dures. Principal among these are the relocation of tendon anchorage zones, the use
of multiple shear keys, the omission of epoxy from the joints, and the use of tendons
external to the webs and flanges.

Relatively little analytical investigation has been undertaken to predict the
behavior of segmental bridges under the new developments for all ranges of loads. A
significant number of segmental prestressed concrete box girder bridges with exter-
nal tendons and dry joints have already been constructed. Substantial economic and
construction time savings have been indicated for this type of construction. How-
ever, analytical evaluation of their behavior is needed before additional construction
proceeds.

An exact analysis of segmental bridges with external tendons is extremely
difficult. It requires finding stress and displacement functions that satisfy the equi-
librium equations, the constitutive relationships, and the compatibility conditions at
every point in the system. An approximate analysis based upon an assumed form
of the solution is satisfactory. However, finding suitable displacement or stress func-
tions to approximate the whole domain of an externally prestressed segmental bridge
is complicated. This may be simplified by discretization of the system into a finite
number of components whose behavior can be approximated, and then assembling the
original system from its components for analysis. This is the finite element approach
whose results converge to the exact solution as the mesh of elements used becomes
finer.

The primary objective of this report is to develop a finite element formulation
suitable for evaluating the response of segmental bridges with external tendons subject

1



2

to service and overloads. The formulation is verified by comparing its results with
classical solutions and actual behavior using linear and nonlinear material solution
procedures. The analysis technique is also applied to an actual bridge model designed
for physical testing.

In the following chapter, the finite element modeling‘ and formulation for seg-
mental bridges with external tendons is developed. The nonlinear solution procedures
are discussed in chapter three. Specific characteristics of the formulation are verified
in chapter four. In chapter five a complete experimental bridge model is analyzed. In
the final chapter the conclusions and summary of the work is given.



2. FINITE ELEMENT FORMULATION

A segmental bridge with external tendons is modeled with three types of
finite elements. A one-dimensional beam element for the segments, a joint element that
transmits forces between segments, and a tendon element connected to the segments
by rigid diaphragms. Figure 2.1 illustrates a simple bridge span of two segments,
modeled with four beam elements, three tendon elements, and one joint element.

This chapter presents the formulation of the three element types.
2.1 Beam Element

The segments are modeled by a one dimensional beam element including ax-
ial and flexural deformations. The beam cross section has a vertical axis of symmetry,
and is only loaded along that axis, so torsional behavior is neglected. The element
includes nonlinear material properties. Small deflections of the beam are assumed in
the formulation, and time dependent effects are neglected.

Figure 2.2 shows the beam element under consideration. The horizontal and

vertical displacements of the beam, u(z,y) and v(z,y) respectively, are:

u(z,y) = uo(z,y) + Au(z,y)
{ v(z,y) = vo(z,y) + Av(z,y) , (2.1)

in which u,(z,y) and v,(z,y) = v,(z) are the current displacements, and Au(z,y)
and Av(z,y) are the displacement increments defined as follows:

Au(z,y) = —Au,(z) + y%[Av(z)]
Av(z,y) = Av(z)

(2.2)

where Au,(z) and Av(z) are the horizontal and vertical displacement increments
along the reference axis of the element. The sign convention assumes that compressive

distortions are positive.

The displacement field is approximated by a discrete set of degrees-of-
freedom at the two nodes of the element. At each node there are two translations

3
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Fig. 2.1 Finite element model for a simple-span, segmental bridge with external
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Fig. 2.2 Beam element model
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and one rotation ( Fig. 2.2 ), such that the change in displacements along the axis of

(T}

the element are given by:

II=

AU (2.3)

~e

where

_[—Nl,,(a:) 0 0 ~Nz, () 0 0
= 0 Niy(z) Naw(z) 0 Ny (z) Niw(z)

in which N;,(z) are standard axial linear shape functions, and Nj,(z) are standard

(2.4)

(55

flexural cubic shape functions, and

Aul
A‘U2
_ AU3
AU = Aug (2.5)
A‘U5

Aus

Assuming plane sections remain plane during deformation, the longitudinal

strain and curvature are:

{ €(z,y) = € (2, ) + Ae(z, y) (2.6)

¢(z,y) = do(z,y) + Ad(z,y)

where ¢€,(z,y) and ¢,(z,y) are the current longitudinal strain and curvature, and

Ae(z,y) = %[Au(z, v)]

= 2 A @) + v (Av(e)
= —A¢, () + yAd(z) (2.7a)

also

Ad(z,y) = ;:;[Av(z)]
— Ag(z) (2.76)

Therefore, Eqs 2.3 and 2.7 produce:

{ ~ Adala) } = B.AU
- B. (2.8)
Ag(z) -



where

:"Nlu (2:) 0] 0 ;_:'Nzu (Z) 0 0
0 diz%Nl” (I) iij2" (:‘B) 0 dz’ N3u (:C) d_d;?Ntiu (z)
(2.9)

Stresses in the element can be obtained from strains from the constitutive
relationships for the materials. Figure 2.3 shows typical uniaxial stress-strain rela-

tionships for concrete and steel.

The stresses in a material j, are:

9;(z,y) = 050(z,y) + Ady(z,y) (2.10)

where 0;,(z,y) is the current stresses of material j, and

daf (z’ y)

oY Adny) (2.11)

AUJ' (z’ y) =

Internal forces on the element are obtained by integrating stresses in the

NM materials over the cross section as follows:

P(:v Z/UJ (z,y).dA;
) =4 (2.12)
M(z) Z/"J (z,y).y.dA;

where A; is the cross-sectional area of material J Substituting Eqs 12 10 and 2.11

\lnto Egs 2.12, they give:

{ P(z) = P,(z) + AP(z) (2.13)

M(z) = M,(z) + AM(z)
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where

( NM
P(z) =3 [o05(z,y).d4;
i=1 Aj
NM o
AP(z) =Y. __,(_z_,gl .Ae(z,y).dA;
. I (2.14)
My(z) =% [ oj0(z,y).y.d4,
i=14;
NM o)
AM(z) =3, [ ZLE2Y Ae(z,y).y.dA;
L =1 Aj

To evaluate the integrals for internal forces, the beam cross section is divided
into fibers in which the longitudinal strain and stress are constant. An example of a

reinforced concrete cross section using a fiber model is shown in Fig. 2.4.

The internal force integrals are replaced by summation over N fibers, such
that:

;

Po(z) ;ZZZlaa(z,y).A.-

AP(z) =Izv: foilz ) Ae(z,y). As

\ i (2.15)
M,(z) ='_—.Z1 00i (2, Y). ¥ As

N
AM(z) ='21 @fi:i)-Ae(a:, y). v A

where it is not necessary to distinguish materials in the summations. The initial stress
and tangent modulus, o,;(z,y) and %i(z,y), respectively, are evaluated at each fiber
from uniaxial stress-strain relationships for the corresponding material.

Substituting Eq 2.7a for AP(z) and AM(z) in Eq 2.15, gives:

{ AP(z) } _D. { —Ag,(z) } (2.16)
AM(z) = | Ad(z)

where
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Fig. 2.4 Reinforced-concrete fiber cross section



10

E Unzy A1 E ;d:,y -yi-Ai

D= (2.17)

3 dedal g 4 z—u A

Using the strain-displa.cement relationships in Eq 2.8, Eq 2.16 becomes:

{ 2;((2))} =L0.B.AU (2.18)

Applying the principle of virtual work, the internal forces are related to
external forces as follows:

/L (~bea(z) 66()) { Z((z)) } dz = /L 50(2). ¢(a). dz (2.19)

where L is the length of the element, é¢,(z), §¢(z), and §v(z) are small virtual axial
strain, curvature, and vertical displacement respectively, and ¢(z) is the external load
on the element, and is defined as:

q(z) = g.(z) + Aq(z) (2-20)

in which g,(z) is the current load, and Ag(z) is the increment of load. Assuming the
virtual displacement and strain fields have the same functional form as the real fields,
then

bv(z) =N,..6U (2.21a)
and ‘
—6e.(z) } _ ‘ 5
{ 5oz | B.6U (2.218)
in which

N,= (o Niy(z) Naw(2) O Nay(z) N4,,(a:)>

These functions follow from Eqs 2.3 and 2.8, respectively.
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Substituting Eqs 2.13, 2.20, 2.21 into Eq 2.19, and using Eq 2.18 gives the

equilibrium equations for an element:

gt-Ag;—(_Fo'i'foe)'*'Afe

where

[
IS
lit

.dz

L
t=/éT-

is the element- tangent stiffness matrix,

5°=/L 5" { )} o

o
is the current internal nodal-force vector,

L

foe =/ Nf.qo(a:).dz

o

is the current external nodal-force vector, and

- T
AP, = | N;.Aq(z).dz

° ~—

(2.22)

(2.23a)

(2.23b)

(2.23¢)

(2.23d)

is the incremental nodal-force vector. Because the vector (-F, +~ »e) 18 zero if the

previous increment reaches equilibrium, then

K: AU = AP,
— ‘,’\a ;~

(2.24)

The integrals in Eq 2.23 are evaluated numerically using gaussian quadra-

ture.

25 . . . . .
'* The corresponding expressions for numerical integration of these terms are:
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K, =’§Wk~£T(s‘.‘)- D(s.)- B(s.)-1 J(s) | (2.25q)
F= f: W B7(6)-{ poit) 1966 | (2.25t)
~oe = i W, N7 (6)-20(52)- 1 7 () | (2.25¢)
AP, = iWk-J,XuT (). Ag(s,)- 1 I(s.) | (2.25d)

*
[
-

In these expressions, ¢ is a dimensionless variable with its origin at the center of
the range of integration, ¢, and W) are the location and weighting factor of point
k relative to the center, and M is the number of points at which the summations
are to be evaluated. Also | J(¢,) |= dz/d¢ is the Jacobian for the transformation of

coordinates.

The number of integration points, M, should be selected for accurate numer-
ical integration of the integrands. The order of the polynomials in Eq 2.25 depends
on the shape functions, and the variation of stresses and applied loads along the el-
ement. For axial-linear and flexural-cubic shape functions, and for typical materials

and loads, the integrals in Eq 2.28 can be integrated with satisfactory accuracy using
three integration points.

2.2 External Tendon Element

The external tendon element is a one-dimensional axial element connected to
beam elements by rigid links representing diaphragms. The element includes material
nonlinearity of the tendon, but small deflections are assumed. Figure 2.5 shows the

external tendon element. Important geometric information is:

Lp=[(L+g1 — 02)% + (d+ ez — &)?]'"*

cos@ = (L+g,—g2)/Lp (2.26)
sind = (d+e; —€e)/Lp
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The axial displacement of the tendon can be defined as:
u(z) = u,(z) + Au(z) (2.27)

where u,(z) is the current displacement. The quantity Au(z) is the change in dis-
placement, which is related to the end displacements of the tendons, Au} and Aul,
by axial shape functions, (Fig. 2.6):

Au(z) = N. { 2::: } (2.28)

where
Tz
N=(1- E’E>

Figure 2.6 also shows the relationship between u}, u, and the displacements
at the nodes of the element. The incremental relationship is:

Auf
=A. 2.29
o | =02 (229
where CS -8, 00 o0
_ —bh
4= [0 0 0 C S -4 (2.30)
in which ’
C = cosf
S = sinf
B = eaC+gS
B2 = eC+g2S
Substituting Eq 2.29 into Eq 2.28, gives:
Au(z) =N .A.AU (2.31)

The strain of the tendon is constant and is given by:

€= € + Ac (2.32)



Tendon

Fig. 2.5 External tendon element model

u3( —>u

Fig. 2.6 Compatibility relationships of the tendon element
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where ¢, is the original strain, and

d
= — .3
Ae = [Au(z)] (2.33)
Using Eq 2.31, Eq 2.33 becomes:
Ae= B.AU (2.34)
where ,
B=7(-C -5 f C S ~f) (2.35)

The stress in the tendon is obtained from the constitutive relationship for

the tendon material as a function of strain:

0 =0,+Ac (2.36)
0, is the original stress, and
Ao = %‘E Ae (2.37)
Thus, using Eq 2.34, The change in stress is:
Ao = %E_Q_ AT (2.38)

The principle of virtual work gives:

/ 6¢’.0.dV, =8UT.(P,. + AP.) (2.39)

Ve

in which V, is the volume of the tendon, P and AP are the current and incremental
external nodal loads respectively, and §¢T and 5 UT are virtual axial strain and nodal

displacements respectively, such that

é" =6UT. BT (2.40)

Using Eqs 2.36, 2.38, and 2.40 in Eq 2.39 gives the equilibrium equations
for a tendon element:

K. AU = (-F, + P..) + AP, (2.41)
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where

do

7§ d_ dz (2.420)

IIN

is the tangent stiffness matrix, and
Lp

F,=A, / BT .0,.dz (2.42b)

[

is the current internal nodal force vector which includes initial prestress forces. A, is
the cross sectional area of the tendon.

Substituting Eq 2.35 into Eq 2.42a, gives the tangent stiffness matrix:

¢ cs _BC —C? —CS  BC 1
s2 ~BS —-CS -S2 B8
_ B2 Ch SB1 —piB:
K.=D, Symmetric C* €S -BC (2.43)
S2  —B,8
in which

_do Ap
P de Lp

Also substituting Eq 2.35 into Eq 2.42b, gives the internal force vector:
-C
-S
Fo=4,0, { Pt (2.44)
~° ° c
S
—B2

2.3 Joint Element

The joint element models the behavior of the joints between two adjacent
girder segments. The joint cannot resist tensile stresses above a specified level ( zero
if no epoxy is used ). The gap between the segments is represented by a function g(y),
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Fig. 2.7a, and the force-displacement relationship for the joint is shown in Fig. 2.7b.
The assumptions on the behavior of the joints are: (1) plane sections remain plane,
(2) no relative vertical deflection (no slipping), (3) small deflection of joint, and (4)
infinite strength of joint.

The joint element has four degrees-of-freedom as shown in Fig. 2.8; a hor-
izontal translation and a rotation on each side of the joint. No relative vertical de-
formation of the joint is allowed, so it is not necessary to include a vertical degree-of-
freedom in the joint element. The vertical displacement is included by assembly of

‘adjoint beam elements.

The gap in the joint can be represented as:

9(y) = 9.(y) + Ag(y) (2.45)
where g,(y) is the current gap, and Ag(y) is the increment gap, such that
Ag(y) =b. AU (2.46)

where
b=(1 -y -1 y)

The model assumes that no epoxy is used, so the incremental force-displace-
ment relationship is:

_Jo for g(y)< o
Af(y) = { k. __l;A‘U for g(y)> o (247)

in which k is the stiffness, and Af(y) is the increment force per unit depth of the
joint. The value of k should be large compared to the axial stiffness of the beam, but
not so large as to lead to ill-conditioning of the assembled structural stiffness matrix.
The accumulated force is:

f(y) = fo(v) + Af(y) (2.48)

with f,(y) as the current force per unit depth.
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1) 4
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Fig. 2.8 Joint element model
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The principle of virtual displacement for the joint element gives:

/ 55 (v)- f(y).dy = 8UT. (Poc + AP.) (2.49)

in which T, is the depth of contact in the joint, and foe and Afe are the original and

increment forces on the element. The resulting equilibrium equation is:

gt.AE = ("fo + P,.)+ AP, (2.50)
where
K, = / b k.b.dy (2.51a)
T
is the stiffness matrix, and
o= / b". fo(y)- dy (2.518)
r.

is the current internal force vector.

The area of contact is the part of the joint where g(y) > 0. The ordinate of
the point where g(y) = 0 is , and it is calculated from Eq 2.46:

Yo = (w1 — ug)/(uz — uy) (2.52)

If y. < —hy or y, > hy, where h, and h, are the distances to the extreme fibers of the
Joint from the nodes, the joint is all in tension or all in compression. If —h, < y, < hy,
the joint is partly in tension and partly in compression. The four states of the element

are given in Fig. 2.9, where a and b are the lower and upper limits of T',.

Substituting the value of b into Eq 2.51a, gives the stiffness matrix:

L -, -, L
L I, -I

K=k L -L

(2.53)
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in which ’
I, = ;(b" -a") with n=1,2, 3.

Also Eq 2.51b, using the same functional form of Eq 2.47 for fo(y), gives the expression
for the internal force vector:

Il.ud—Iz.ﬁd
—L.ug+ 1.9

Fo=k 2 Ud 3-Yd (2.54)
~ —Il.ud+I2.04

Iz.ud - I3.0d
with ug = u; — u3 and 0; = u, — u,.

The formulation of the joint assumes infinite strength, so a seperate calcu-
lation for failure at joints is needed. For reinforced concrete segments, this must be
accounted for in the analysis by considering the nominal strength of the material in
the joint.



3. SOLUTION PROCEDURE

The element formulations presented in chapter two are used in a nonlinear
solution procedure for analysis of external prestressed segmental bridges. An incre-
mental solution with suitable small load increments is appropriate for convergence
up to failure of the structure. The Newton-Raphson or Modified Newton-Raphson
iteration procedures are used to obtain equilibrium convergence for each load incre-
ment. The computational steps for these procedures require three major steps: (1)
linearization, (2) equation solution, and (3) state determination.

The nonlinear equilibrium equations representing the structure discretized
with beam, tendon, and joint elements are:

F(U)=P (3.1)

where '\IJ‘ and ~P are the internal and external nodal load vectors. The solution of Eq
3.1 requires éolving linearized forms of the equilibrium equations until convergence is
reached.

In the Newton-Raphson procedure the tangent stiffness matrix is reformed
at every step.® The linearized equations are:

K.(U.). AU, = P - F,(U,) | (3:2)

with
: Un+1 = Un + Agn

where the subscript n refers to the iteration number. Convergence is based on the
norm of the unbalanced load vector on the right hand-side of Eq 3.2, and the norm
of Ag , such that both are less than a specified tolerance. The iterative procedure is
illustrated schematically in Fig. 3.1a for a problem with one degree of freedom.

In the Modified Newton-Raphson procedure, the tangent stiffness matrix
is reformed only after several iterations. This is clearly more economical at each
iteration but the convergence is slower. Figure 3.1b illustrates this method where K,

is reformed every two iterations.

22
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The computational steps involved in these procedures are now discussed as
they relate to the formulation of the previous chapter.

3.1 Linearization

In this phase the tangent stiffness matrix, K .(U,), of the structure is as-
sembled from the element stiffness matrices. Equations 2.25a, 2.43, and 2.53 give the
formulation of the beam, tendon and joint element stiffness matrices, respectively.

3.2 Equation Solution

This step requires solution of the linearized equilibrium equations, Eq 3.2,
for AU,. This is optimally accomplished using gaussian elimination implemented
by the Crout algorithm.*® The assembled stiffness matrix is symmetric and banded.
However, because external tendon elements connect two distant nodes, the nonzero
profile of the matrix has long columns and rows, creating a large bandwidth. Storage
of the coefficients within the nonzero profile of the upper triangular portion of the
stiffness matrix by columns has definite advantages over a banded storage. It almost
always requires less storage and computational effort, and the storage requirements are
not severely affected by few long columns. This is the active column profile (skyline)
procedure.

3.3 State Determination

After the solution for the displacement increments is obtained, the new state
for the elements is required. This involves the computation of strains, stresses and
the vector for internal forces, F.(U,). A path dependent state determination is used

to allow for the situation where strains do not increase monotonically.

In the path dependent state determination , stresses are computed at the
end of each iteration based on the strain increment for that iteration. In contrast,
with path independent state determination the stresses are computed for the accu-
mulated strain increments at any iteration. For cases in which the strains increase
monotonically during iteration, the results with the two types can be expected to be
in close agreement, Fig. 3.2a. However, if the strains do not increase monotonically,
path dependent state determination may give better results, Fig. 3.2b.!
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For the beam element, substitution of Eq 2.8 into Eq 2.7a gives the incre-
mental strain for this iteration. The corresponding stress increment is computed from
Eq 2.11 using the constitutive relationship for the materials. The accumulated stress
up to any iteration is updated from Eq 2.10. P,(z) and M,(z) that correspond to the
current stress o,(z,y) are evaluated from Eq 2.15. Then, Eq 2.25b gives the current
internal nodal forces in the beam element.

For the tendon element, Eq 2.34 gives the strain increment. The stress
increment is determined from Eq 2.37, and the current stress, o, is computed using
Eq 2.36. The corresponding internal force vector is determined from Eq 2.44.

For the joint element, the increment gap and increment force per unit depth
are computed from Eqs 2.46 and 2.47, respectively. Also, the current force per unit

depth and the corresponding internal force vector for the element are determined from
Eqs 2.48 and 2.54.

The internal resisting force vectors for each element are assembled to give

F,(U,), completing the state determination process at each iteration.



4. VERIFICATION OF FORMULATION

The finite element formulation in chapter two is verified here by comparing
the analytical results with available solutions for several examples. Features unique to
the formulation are tested, and the behavior of external prestressed bridges with and
without joints are examined. Linear and nonlinear material behavior are considered
in the examples.

Example 4.1: Number of Fibers in a Beam Cross Section

To evaluate the effect on the solution of the number of fibers used in a beam
cross section, the composite beam shown in Fig. 4.1 is analyzed. The beam consists
of two linear, elastic materials A and B, such that:

Modulus of Elasticity of A = 1,000ks¢
Modulus of Elasticity of B = 20,000 kst .

The cross section is modeled using 1, 2, 4, 8, and 16 fibers for material A,
and 1 and 2 fibers for material B. The number of elements does not affect the solution
because the beam has constant axial strain and curvature along the reference axis; two
elements are used. The numerical results and exact solution are tabulated in Table
4.1. These results indicate rapid convergence, where ten fibers give an error of less
than 1%, and should be satisfactory for practical analysis. An efficient fiber model
should concentrate the fibers away from the neutral axis.

Example 4.2: Number of Elements in a Span

The simply supported beam of Fig. 4.2 is used to study the effect of the
number of elements in a span. The materials are linear, elastic, where the moduli
of elasticity are the same as in Ex 4.1, and the number of fibers is set at 16 and
two for material A and B, respectively. The axial strain and curvature are linear
functions on both sides of the load along the reference axis, which is not the neutral
axis. The results of this example improve by increasing the number of elements
because the formulation of the beam assumes constant axial strain. If the neutral axis
had been selected as the reference axis, only two elements would be required for an

27
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100 in.

Fig. 4.1 Finite element layout for Example 4.1

Table 4.1 Results of Example 4.1
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Number Number Horizontal Rotation at Vertical Percentage
of A of B Displacement Points1 &3 Displacement Error of Vert.
Fibers Fibers of Point 3 (in.) (£rad/in.) of Point 2 (in.) Displacement
1 1 .03373 .009467 .2367 46.9
2 1 .02515 .007061 .1765 8.8
4 1 .02365 .006639 .1660 23
8 1 .02330 .006541 .1635 08
16 1 .02322 .006518 .1629 04
16 2 .02316 .006502 .1625 02
Exact Solution .02309 .006486 .1622 _
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exact solution. However, when nonlinear material behavior is allowed the location of
the neutral axis changes, so it is important to assess the convergence as the number
of elements increases. The structure is analyzed with 2,4,8 and 16 equal elements,
and the results are shown in Table 4.2, in comparison to the exact solution. These
results and the results from other examples indicate that the rate of convergence is
a function of the degree of nonlinearity of the axial strain and curvature functions.

Small elements should be used where these functions are highly nonlinear.
Example 4.3: Nonlinear Beam Behavior

In the following example, the model of a reinforced concrete beam includes
a nonlinear stress-strain curve for concrete, and bilinear curves for passive steels. The

beam is shown in Fig. 4.3. The material properties are:

Concrete: Ji =5.62ksi f{ =0.611kss
€0 =2.20x 1073  E; = 4.87 x 105 ks
#4 Bars: fsy = 50.1 kst € = 0.2
E,; =29.2x 10% kst E,; = 144 kst
#9 Bars: Joy = 80.1kst €, = 0.139

E,; =30.7 x 10° kst E,, = 418ksi.

This beam is one of a series of beams tested by Bresler and Scordelis in 1961.% The
finite element model is similar to those used by previous researchers evaluating dif-
ferent analytical and numerical techniques. The load-deflection responses from the
experimental results and from this analysis are given in Fig. 4.4. It shows that the
finite element analysis approximates the actual behavior of the beam up to failure

where the solution diverges at 80 K.
Examples 4.4 to 4.7: Effects of Tendons and Joints on Beam Behavior

The following examples consider the effects of external tendons and joints
on the load-displacement behavior of a simply supported beam. Figure 4.5 shows the
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Fig. 4.2 Finite element layout for Example 4.2

Table 4.2 Results of Example 4.2

Number | Midspan Percentage
of Vertical Error of
Elemenis | Displacement | Displacement

(in.)

2 .3189 11.5
3508 2.7
.3586 0.5
16 3605 0.
Exact 3604 -

Solution
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: Element Boundary
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Fig. 4.5 Finite element model for Examples 4.4 to 4.7
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four examples studied, having the same cross section. The beam and tendon materials
are both linear and elastic with very high strength, where

Beam: Modulus of Elasticity = 4,000 kst
Tendon: Modulus of Elasticity = 30,000 kst
Area =3 in?
Initial Stress =450k .

Example 4 is a one segment beam, while Ex 5 is formed of 15 segments held in
equilibrium by an external axial load. Example 6 is the same as Ex 4 with a tendon,
also Ex 7 is the same as Ex 5 with a tendon instead of the axial load. The force-
displacement relationships of the four cases are tabulated and plotted in Table 4.3
and Fig. 4.6. Also, the fraction of the joint opening relative to the depth of the joint

near the center is given.

Example 4 has a linear force-displacement relationship as expected. The
same results can be determined using classical methods. Example 5 shows that the
presence of the joints increases the flexibility of the structure after they start to
open. The solution diverges at 70K where the axial force is not enough to maintain
equilibrium. The force-displacement relationship in Ex 6 is linear. The external
tendon causes an upward deflection that delays joint opening from the bottom, and
increases the stiffness of the structure as verified by comparing the slope to that of Ex
4. Example 7, with joints and external tendons, shows that the effects of both types of
elements are combined. Ultimately, the structure fails when the joints open to such an
extent, that the increasing axial load in the tendon cannot match the corresponding
increase in the beam’s flexibility. Yielding of the tendons or crushing of the beam
at the critical joints are other modes of failure that occur in similar structures with
actual material strengths.



aArgedau st 8uruado qurof doj,

96’ ‘ oLL'Y 188°2 003
96’ 662V 1692 061
g6’ qc8’e 1092 081
S6° c9g'¢ 11ee 0LI
g6’ ¥26'C 121°2 091
¥6’ ¥19°¢ 186°T (414 0ST
¥6’ LET'C WLl 696'C o¥1
g6’ €08°T 199°1T LSL°T (0191
68’ V671 19¢°1 vec 031
43 (A4} ILT'T - 8882 011
89" 100°T 8086°0 121°2 001
(4t 6108°0  806L'0 606'T 06
¥e 8L09°0 80090 1691 08
T GST¥'0  60I¥'0  so81aA1Q S8¥'1 0L
0 06" LETT0  602Z°0 eVl €L2'T 09
0 Ly 0%€0'0 60800 9801 1901 0s
0 &y’ L6ST'- 1691~ 9698°0 ¥8¥8°0 o¥
0 0z’ (28t 16v¢- 62¥9°0 £€989°0 0g
0 0 (454 0 1689~ ¥82v°0 evevo 02
9%’ 0 §9¢L- 162L - cy1To 12120 01
gg- 0 89€6'- 0616°- 0 0 0
L XT  gxy Lxg  9xg  gxd v x> (sdryp)
| Ijue) resp Sutwadp | (rur) (premumo(q sanyis0g) d
.' jurop jo uorjoRiy : quawede|dsy] wedsprpy

1P 03 ' sejdurexy Ioj
norpoesy Supmad(Q juror pue justnade[dsi(y-peor wedspiN £°'F 9[qeL

Ge



36

L'y 03 ' sojdurexq IoJ soAInd juswededsip-peof uedspiy 9% "Sig

("w) uswaoedsig

Qce

(sd) peo




5. APPLICATION

This chapter presents the analysis of an externally prestressed segmental
bridge which has been designed for physical testing. The response of the bridge is
computed by the nonlinear finite element method described in Chapters 2 to 4. The
model bridge is a three-span, precast-segmental, box-girder structure with external
prestressing and dry joints with multiple shear keys. Figures 5.1 to 5.3 give the details
of the model bridge.

The dimensions in the longitudinal direction of the structure are given in
Fig. 5.1. Figures 5.2a and 5.2b show the cross sections of the regular segments within
the spans and of the special pier segments, respectively. Welded-wire fabric meshes
placed at the top and bottom of each flange provide the longitudinal reinforcement
for the segments, with some additional reinforcing bars placed as shown in the cross
sections. The transverse and diaphragm reinforcement are not shown in the figures.
The closure strips have the same cross section as the regular segments. The external
tendon profile is shown in Fig. 5.3. Figure B.1 gives the geometry and prestressing
forces of the tendons at transfer used in all the analysis cases of this chapter. Also,
few bonded internal tendons are prestressed through the upper flange of the model
bridge (not shown). However, for the purpose of illustrating the effects of external
prestressing and dry joints, the bonded internal tendons are not considered in the

analyses, except where mentioned for comparative purposes.

The prestressing forces used in the analyses are applied before losses due
to elastic shortening have occurred. However, those used in actual structures are
applied after elastic shortening. Also, losses of prestress due to creep and shrinkage
of concrete, and relaxation of tendons are not accounted for. For the purpose of this
report, a realistic set of initial forces, as the ones used, are satisfactory to illustrate

the general behavior of externally prestressed segmental bridges.

Some of the implicit assumptions in the finite element analysis might deviate
the results here from the actual behavior, especially close to ultimate loads. These
assumptions are: (1) all passive reinforcement is adequately developed, (2) no slippage
of tendons at deviation points, (3) no shear failure through joints, (4) diaphragms

37



38

93pu1q [ejuowrdes ueds a1y, 1¢ Sty

llw.lll
wawbag so1d [eoadg W.&’
wbesydeig -
juswbag feoidA] m
wheydeiq ..\ ;
0=l
1Tr L.lA.
O-cl «0- 52 w0~
- > oLl
o= 2D8 _- . _ O-22=.8-2@0! WJO-2
0-2 llu —HH
:m " ! —_m :m
1
( sum se1UBD BUY 1 UM n
g uedg O ueds o} [eolewwis ) v ueds %_

3
oy -‘l

V4

(1eoidA1 ) duig aunsojo




39

uoryoss 88010 juaurdes rendoy eg'q ‘Sig

]
-
~y
:—
I
IsM Gy st 2#
ISy 08 st €M oL
EM-LL
—Y
wl
T T R — e e .




. 40

uoryoes ss010 quomides W1 qZ'g "SI

oy

i
[+,
—]
®
@
v .
] _V_.i
=

o e “» — - |||l|.|l||||V. P A 4
Sy e —— A ] "
n I _ \\o__ )
x U (Ol .
\ __./_/A .T\ IS 09 SIE#
oy _
wbeiydeiqg __\ _ e 1SY Sb S 2# 6
| ¥ _— IS} 08 Sl EM
\__. _ T
// | \lN#.\u_
Tlll.ll.llllﬂ.lllljlwlll.llalllllullll.‘l .




41

(r'g -81g ut usAld oIe ssoIys

pue A1jour0e8) a8piiq [ejuswides 10§ o[goid uopudy [RUINIXY §'G 81q

— /’ N
/AW\H\ a9 N_U —U IJ”/ N _

g o
Bl

1LL

L\

Il

g2} |va

I\
I\
\

-~
i
I
/
1]
]
g{ 4
NN —

val|avl v H——

1l




42

are infinitely strong, and (5) the classical assumptions normally used for behavior of
structures under service loads.

Since the formulation of the joint element assumes infinite strength, the finite
element analysis resumes after the concrete reaches its nominal capacity at the critical
joint. Termination conditions need to be separately determined for failure of joints.
The linear gap-force relationship used in the element formulation is inappropriate for
such calculations. An approximate method considering the nominal strength of the
material is used as allowed by the ACI 318-83, Section 10.2.! The equilibrium at the
joint is expressed, using ACI 318-83 notation, as:

fps Aps =0.85f! B, cb

where f,, A,, is the tensile force in the tendons, and 0.85 f! is an assumed uniformly
distributed, concrete compression stress over a rectangular area of width b, and depth
Pic, in the upper or lower flange. The results from the finite element analysis give
another relationship between the total force of the tendons and the depth of contact,
c. If both relationships are plotted, the intersection point determines when crushing
occurs at the critical joint. The corresponding load is determined from the analysis.

The span-by-span construction procedure for externally prestressed bridges
affects the state of stress in the bridge after erection, before application of live loads.
For this model bridge, the sequence is to erect span A (Fig. 5.1) on shoring, prestress
tendons Al and A2 (Fig. 5.3), and remove shoring. Then, erect span B on shoring,
prestress tendons Bl and BA, and remove shoring. Then, erect span C on shoring,
prestress tendons C1, C2, and CB, and remove shoring. Finally, post-tension the top
internal tendon and grout it. The deflected shape and stresses of the bridge are not
the same as if the three spans were erected together on shoring, and then all the
tendons were prestressed. Nevertheless, the bridge is analyzed here without taking
into account its construction sequence. Linear analysis has shown that construction
sequence has a small effect on service load stresses. The construction sequence, also,
has no effect on the failure loads and mechanisms of the bridge.

In the finite element modeling, each segment is divided into two elements.
The fiber models for the regular and pier segments are shown in Figs. 5.4a and 5.4b,

respectively. The area of each fiber, the distance of their centroids from the reference
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axis, and material types are given in Tables 5.1a and 5.1b. The closure strips are
considered as separate elements with the same cross section as the regular segments,
but without reinforcement. The materials are idealized by a second-degree, nonlinear
stress-strain curve for concrete (Fig. 5.5), and bilinear curves for the reinforcing steel
'(Fig. 5.6). Table 5.2 lists the properties of the material types in the segments. The
external tendons are divided into elements that span between anchorage locations and
deviation points at the diaphragms, with a bilinear stress-strain relationship (Fig. 5.7).
Each joint, including both sides of the closure strips, is modeled as a joint element
with a stiffness of 1. x 10°K/in. /in.

The weight of the typical segments is 0.451 K/ft. Addition of concrete blocks
to simulate actual behavior creates a total dead load of 1.804 K/ft. In all the analysis
cases of this chapter, the dead loads are applied at the nodes using tributary areas,
and are referred to as DL. The following examples consider the behavior of the model

bridge for various live load cases.

Example 5.1: Segmental Versus Monolithic

In this example, the model bridge is compared to a similar monolithic bridge,
where the reinforcement is assumed continuous except through the closure strips. Both
structures are subjected to a concentrated live load at the interior midspan. The load
is incremented up to failure which is manifested by either the crushing of concrete
at a joint (segmental bridge only), or by the divergence of the computer solution due
to other failure schemes. The segmental bridge fails when the interior midspan joint
opens to about 94.4% and the concrete exceeds its compressive strength of 6 ksi at
the joint. However, the monolithic bridge first forms a hinge at the center when the
corresponding active and passive reinforcements yield. Then, a mechanism occurs
when two other hinges form at the closure strips of the interior span because concrete
reaches ultimate strength at the bottom fibers. A

The live load versus displacement, joint percentage opening and width, and
stress for one of the tendons at the interior midspan for both bridges are plotted
in Figs. 5.8, 5.9, and 5.10. In the segmental bridge, the interior midspan joint opens
under small load and it reaches 80% of the total depth at 25 K live load. However, the
joint width remains negligible and tendon stresses experience small change. Beyond
this force, the bridge becomes more flexible as the joint width increases noticeably
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Table 5.1 Model for Regular and Pier Segments

Fiber Area (in.?) y (in.) Material*
1 84.0 -6.0 C
2 1.26 -5.5 S3
3 '0.40 -5.5 S1
4 84.0 -5.0 C
5 54.0 -4,09 C
6 15.9 -2.78 C
7 11.7 -1.29 C
8 12.1 0.49 C
9 12.0 2.5 C

10 9.0 4.25 o]
11 18.0 5.65 C
12 36.0 7.06 C
13 48.0 8.0 C
14 0.40 8.5 S1
15 0.60 8.5 S3
16 48.0 9.0 C

*See Figs. 5.5 and 5.6 and Table 5.2.

C: Concrete
S: Steel
(a) Regular Segments
Fiber Area (in.?) y (in.) Material*
1 42.0 -6.0 C
2 84.0 -5.5 C
3 1.99 -5.44 S2
4 84.0 -4.5 C
5 0.85 -4.12 S1
6 84.0 -3.5 C
7 48.5 -2.25 C
8 61.7 -0.5 C
9 60.0 1.5 C
10 60.0 3.5 C
11 49.5 5.27 C
12 48.0 6.5 C
13 0.5 6.62 S1
14 48.0 7.5 C
15 48.0 8.5 C
16 1.98 8.71 S3
17 24.0 9.25 Cc

*See Figs. 5.5 and 5.6 and Table 5.2.

C: Concrete
S: Steel

(b) Pier Segments
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Table 5.2 Material Properties for Concrete Segments and Reinforcing Steel

Material .
Type Description
c f's =6.00Ksi - f = 0562 Ksi
E; =550x10°Ksi . €, =220x10°
S1 fsy = 45.0 Ksi € q,=016
Eg = 20.0x10°Ksi E. =100Ksi
S2 fSy = 60.0 Ksi € su = 0.21
. ,
Ey = 29.0x10 Ksi Eg = 100 Ksi
s3 foy = 800 Ko €, =028
3,
E 4 =29.0x10" Ksi E ¢ = 100 Ksi

* SeeTable5.1and Figs.5.5and 5.6
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and the tendons pick up larger tensile forces. The joints act as preset cracks, and the
concrete segments do not experience any tensile cracking. This continues up to failure
at about 56 K load and 0.67 in. displacement.

Explanations for the low strength and ductility of externally prestressed
segmental bridges can be attributed to the existence of unbonded tendons and dry
joints. Since the tendons between deviation points are free, the strain in the tendon
is constant along its length, and the strain at the critical section is less than what it
would be for internally bonded tendons under similar conditions. Hence, the stress in
the tendons is increased only slowly, so that when the crushing strain has been reached
in the concrete, stress in the steel is far below its ultimate strength (Fig. 5.10). Also,
the existence of joints tend to concentrate the stresses in the concrete at the joints,

thus resulting in early failure.

The main sources of error in this analysis near ultimate are the Jjoint as-
sumption that plane sections remain plane, and the estimated value of the stiffness
per unit depth, k. When the joint width becomes large, the joint section cannot be
considered plane anymore. Also, at a larger value of k, the percentage of joint opening
is larger for the same load, which results in earlier failure.

In contrast, the monolithic bridge cracks in tension near the interior midspan
when the load is about 37 K. As expected, a few large cracks appear in the middle
instead of many small, well distributed omes. The: interior midspan tendons yield
at about 100 K and failure occurs at 108 K live load and 2.8 in. displacement. The
absence of the joints eliminates the problem of concentrated stresses because the cracks
are not as deep as the joint openings in the segmental bridge. Also, the presence of
a large compression zone with high concrete strength allows the stress in the tendons
to increase enough to develop yielding.

Example 5.2: Segmental Bridge With Bonded Internal Tendons

The segmental model bridge is considered here with bonded internal tendons
in the top flanges of the segments. These tendons have the same material as the
external tendons with a total cross-sectional area of 0.68 sq in. located at about 1.3 in.
from the top with a prestressing force at transfer of 189 K (before elastic shortening).
In the analysis the internal tendon is approximated by end forces, which are applied
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at the reference axis of the elements, and an additional steel fiber in each segment.
This approximation does not consider the effect of the variation of the internal tendon
stresses through the joints. The results of this analysis are compared to those of the
segmental bridge of Example 5.1. The capacity of the model bridge increases from
56 K to 65 K because of the internal tendons, where the failure mechanism remains
the same. Also, the presence of the internal tendons increases the stiffness of the
model bridge as expected. For the same load, the bridge with the bonded internal
tendons has smaller deflection at the interior midspan (Fig. 5.11), less joint opening

and smaller joint width (Fig. 5.12), and the stresses in the external tendons are smaller
(Fig. 5.13).

Example 5.3: Segmental Model Bridge Subject to Service and Factored
Live Loads

This example considers service and ultimate load cases that cause critical
conditions in the segmental model bridge. For the service loads, tributary values of
scaled truck loadings are applied at the nodes, Fig. 5.14. These service loads, SL1
and SL2, are multiplied by an increasing load factor, LF, that increments by 0.5 until
failure. Critical joint openings and joint widths, tendon stresses, and concrete fiber
stresses are plotted and analyzed.

DL + LF x LS1 causes maximum moment at the exterior midspan A.
However, due to the non-symmetric tendon stresses and the use of tributary live
loads, either the A or C midspan may control. At service loads (LF = 1.0), all
the joints remain closed. As load increases, more and more joints open from the
bottom side of spans A and C, and the top side of span B. Joint percentage openings
and widths for load factors of 4.0 and 6.5 are given in Fig. 5.15. The compressive
force between two consecutive deviators is constant, so concrete maximum stress in
that zone occurs at the joint with the largest percentage opening. Figure 5.15 also
identifies all the deviators and the critical locations. For three of the critical joints,
the percentage opening, width, and one corresponding tendon stress versus the load
factor are plotted in Figs. 5.16, and 5.17. The widths of the joints and the change in
tendon stresses remain very small up to a load factor of 5.0. Beyond this load, the
increase in joint widths and tendon stresses is more noticeable. Maximum tensile and

compressive concrete stresses occur in the segments neighboring critical joints. Top
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4.88% 488k "
1.33
Scaled Truck Loading
35in. 3.5in.
Spans : A B C
RO A A Nom
9.6 fi. 9.6 ft.
(a)Ls1
7o Ay o Ro
e
7.7 1L 6.5 1t
(b)Ls2

Fig. 5.14 Service live loads



LF = 65 LF = 40
Joint Joint Joint Joint Joint
Opening * Width Opening * | Width Number
(%) (in.) { %) (in.)
0 0 0 0 1
0 0 0 0 2
23.34 .0002 0.09 - 0 3
51.46 .0010 15.95 .0001 4
82.79 .0130 38.28 .0005 5
90.06 .0490 62.28 .0020 6
91.01 .0610 64.84 .0024 7
59.65 .0020 42.03 .0006 8
49.45 .0009 18.16 .0001 9
0 0 0 0 10
0 0 0 0 11
0 0 0 0 12
0 0 o 0 13
-46.65 .0005 0 0 14
- 48.52 .0005 0 0 15
-72.29 .0026 0 0 16
-85.02 0110 -5.01 ~0 17
- 83.41 .0084 -2.09 ~0 18
-77.01 .0040 0 0 18
-72.77 .0027 0 0 20

* Bottom joint opening is positive
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Fig. 5.15 Joint percentage openings and widths for load factors 4.0 and

6.5 of LS1 for all joints

| (to be continued)



LF = 65 LF = 4.0
Joint Joint Joint Joint Joint
Opening * Width Opening * | Width Number
( %) (in.) { %) (in)
-72.77 .0027 0 0 20
-77.80 .0044 0 0 21
-83.35 .0086 -3.82 -0 22
-87.07 .015 -6.97 ~0 23
-71.56 .0026 0 0 24
-45.36 .0004 0 0 25
-43.18 .0004 0 0 26
0 0 0 0 27
0 0 0 0 28
0 0 0 0 29
10.21 .0001 0 0 30
66.01 .0024 28.60 .0002 31
75.62 .0066 54.21 .0011 32
92.93 .0970 66.83 .0027 33
76.78 0075 53.06 .0011 34
74.14 .0052 29.70 .0003 35
42,72 .0006 9.60 .0001 36
17.02 .0001 0 0 37
0 0 0 0 38
0 0 0 0 39

Fig. 5.15 (continued)
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and bottom fiber stresses at two locations are plotted in Fig. 5.18. Failure occurs
when concrete at midspan C crushes in compression, at about LF = 6.5, just before .
midspan A could fail,

DL + LF x LS2 causes maximum negative moment at the left interior
support. Figure 5.19 identifies critical locations and lists joint percentage openings
and widths for load factors of 4.5 and 6.0. Joint percentage openings and widths
at A and B midspans and the interior support in between are plotted versus LF in
Fig. 5.20. For each joint, the stress of one corresponding tendon is given in Fig. 5.21.
Also, Fig. 5.22 shows top and bottom fiber stresses in the pier segment and neighboring
regular segment around the critical Jjoint. Beyond the load factor of 4.0, the widths of
critical joints become noticeable and continue to increase up to failure. The interior

closure strip at the support between spans A and B crushes at about the load factor
of 6.0.



Tendon Stress (ksi)

Concrete Stress (kips )

220
210 1
200
- 190 A
180 1
|
@ - Tendon A2 ot Joint 5
170 A : Tendon A2 ot Joint 7
® - Tendon C1 at Joint 33
16.0+ T 1 T
0 2 » 4q 6
Load Factor

. 5.17 Load factor of LS1 versus stresses of specified tendons at critical joints

2

o

-~ —~-~ Location «x

Location y

Fig. 5.18 Load factor of LS1 versus top and bottom concrete fiber
stresses at specified locations (See Fig. 5.15.)

2 4
, . Load Factor




LF = 6.0 LF =45
Joint Joint Joint Joint Joint
Opening * Width Opening * | Width Number
{ %) (in) { %) ( in.)

0 0 0 0 1

0 0 0 0 2

0 0 0 0 3
4.11 ~0 0 0 4
21.93 .0002 0 0 5
48.79 .0008 | 19.00 .0001 6
62.48 .0020 28.92 .0003 7
52.70 0011 19.51 .0001 8
27.66 .0002 0 0 9
0 0 0 0 10

Y 0 ] 0 11
-23.29 .0002 -5.15 ~0 12
-28.62 .0002 -8.59 ~0 13
.80.75 .0320 -71.18 .0024 14
- 83.14 .0088 -64.47 .0014 15
-21.07 .0001 -11.07 ~0 16
0 0 0 0 17
38.04 .0003 1.87 .0001 18
80.36 .0070 69.64 .0023 19
92.73 .0590 85.29 .0120 20
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* Bottom joint opening is positive
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Fig. 5.19 Joint percentage openings and widths for load factors 4.5 and
6.0 of LS2 for all joints

/ (to be continued)



LF = 6.0 LF = 45
Joint Joint Joint Joint Joint
Opening * | - Width Opening * | Width Number

{ %) (in) | (%) {in)
92.73 .0590 85.29 0.12 20
66.59 .0020 67.19 0020 21
33.85 .0002 33.12 .0002 22
0 0 0 0 23
0 0 0 0 24
0 0 0 0 25
0 0 0 0 26
0 0 0 0 27
0 0 0 0 28
] 0 0 ] 29
11468 | .0001 0 0 30
-12,10 .0001 0 0 31
-1.58 ~0 0 0 32
0 0 0 0 33
0 0 0 ] 34
0 0 0 0 35
0 0 0 0 36
o] 0 0 0 37
0 0 0 0 38
0 0 0 0 39

Fig. 5.19 (continued)
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Fig. 5.20 Load factor of LS2 versus percentage openings of specified joints
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Fig. 5.21 Load factor of LS2 versus stresses of specified tendons at critical joints
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6. SUMMARY AND CONCLUSIONS

In this report, a finite element formulation for modeling externally pre-
stressed segmental bridges has been developed using beam, external tendon, and joint
elements. A nonlinear solution procedure for the equilibrium equations has been used
to compute the response of bridges under static loads. The solution procedure is im-
plemented in a computer program to perform analyses. The adequacy of the theory
is verified with simple examples, and the effects of the joints and external tendons are
examined. The sensitivity of the calculations due to the important parameters in the
model are assessed. A bridge model designed for Physical testing is presented, and
its response to various load levels is computed. The examples use critical loadings to
study the behavior of the bridge.

The finite element analysis presented gives realistic results when externally
prestressed segmental bridges are adequately modeled. Increasing the number of fibers
away from the neutral axis in a cross section, especially for nonlinear ranges of the
materials, improves the results. Also, in the regions where axial strain is not constant
and curvature is not linear, increasing the number of elements decreases the errors
compared to knowm solutions. The materials need to be well modeled to predict
actual behavior. To avoid divergence and errors due to solution methods, small load
increments should be used.

The results show that externally prestressed segmental bridges are not as
strong and ductile as bridges without joints or bridges with internal tendons. Large
transfer tendon forces are needed to avoid Joint openings under service loads. These
forces alsoincrease the strength by delaying large openings of critical joints. If ductility
of the bridges is to be increased, the transfer stresses should be increased to values
closer to the yeild stress of the tendons.
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APPENDIX A
USER INSTRUCTIONS FOR COMPUTER PROGRAM

Introduction

The computer program developed to carry out analysis for the finite element
theory presented in this report is written in FORTRAN IV . Program FEAP® (by R.
L. TAYLOR, Department of Civil Engineering, University of California, Berkeley,
California 94720, U.S.A.) is used as a basis in developing the program. The program
has the ability to be extended to handle general finite element problems, and hence
some of the variables defined may not be applicable to the specific applications here.
The instructions will refer particularly to segmental bridges with external tendons.
The size of the problem is controlled by the dimension of blank COMMON and the
value of MAX as set in the main program. All arrays must reside in the central
memory.

Modeling

The solution of a finite element problem using this program begins with a
sketch of a mesh covering the bridge to be analyzed including beam, tendon, and joint
elements only. All the nodes are located along a chosen reference axis throughout the
bridge.

The next step is to number the elements and nodes in consecutive order.
The beam elements are numbered first, followed by the tendon and Joint elements,
where the order of numbering within any type of elements is not crucial. However, the
order of numbering the nodes influences the efficiency of the solution, and the best
way is from one side of the bridge to the other. Two consecutive node numbers are
assigned at the joint with the same coordinates.

Input Data

Once the sketch and numbering of the mesh is completed the user can pre-
pare the input data for the program. The first step consists of specifying problem
title and control information given in Table A.1, which is used during subsequent
data input and to allocate memory in the program.
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Table A.1 Title and Control Information Formats

Title Card~-FORMAT (20A4)

Columns Description
l1to4 Must contain FEAP
5 to 80 Alphanumeric information to be printed with out-

put as page header

Control Card-FORMAT (1615)

Columns

Description

lto5

6 to 10
11 to 15
16 to 20
21 to 25
26 to 30
31 to 35
36 to 40
41 to 45
46 to 50
51 to 55

Number of nodes

Number of elements

Number of material sets

Spatial dimension (<= 3)

Number of unknowns per node (3)

Number of nodes per element (2)

Added size to element matrices (0)

Number of nodes subject to increment loading |
Maximum number of fibers (<= 25)

Number of different fiber sets

Number of elements with fibers
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Once the control data is supplied, the program expects the data cards for the
mesh description such as nodal coordinates, element connections, etc. The flow of data
to the program is controlled by a set of macro commands. The available commands
are given in Table A.2. PRIN, and NOPR macro commands allow the user to print
and suppress printing, respectively, of any data which is input subsequently. Thus,
once a mesh has been fully checked it is not necessary to reprint all the mesh data.

An analysis will require:

(a) coordinate data which follows the macro command COOR and is prepared
as described in Table A.3;

(b) element data which follows the macro command ELEM and is prepared
according to Table A.4;

(c)‘ material data which follows the macro command MATE and is prepared
according to Table A.5 including data required for each particular element;
and

(d) boundary restraint conditions and Joint specification which follow the macro
command BOUN and is prepared according to Table A.6.

In addition, most analyses require specification of nodal force or dlsplace-
ment value, macro FORC, which is specified according to Table A.7. The end of any
mesh data is indicated by use of an END macro card.

As an example of the data input required to describe a mesh consider Fig.
A.1 as a segmental bridge with external tendons. The input data for this problem are
shown in Table A.8.

At the completion of data input, a problem solution can be initiated. The
program has modules for variable algorithm capabilities by using a macro instruction
language which can be used to construct specific algorithms as needed.

Linear Problems

The user only needs to learn the mnemonics of the macro instruction lan-
guage to use it. For example, the program instruction, TANG, is used to form the
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Table A.2 Data Input: Macro Control Statements

Input Macro Control Cards~FORMAT (A4)

The input of each data segment is controlled by the value assigned to the
control card, CC. The following values are admissible and each CC card must be
immediately followed by the appropriate data (described in Tables A.3 to A.T).

CC Value Data to be Input

COOR Coordinate data

ELEM Element data

MATE Material data .

BOUN Boundary condition/j oint-specification data

FORC Prescribed nodal force/displacement data

PRIN Print subsequent mesh data (default mode)

NOPR Do not print subsequent mesh data

END Must be last card in mesh data, terminates mesh input

Except for the END card the data segments can be in any order. If the
values of FORC are zero, no input data is required.




Table A.3 Coordinate Data

Coordinate Data~FORMAT (215,7F'10.0)
(must immediately follow a COOR macro card)

The coordinate data card contains the node number N and the value of the
coordinates for the node. The value of the spatial dimension input on the control card
sets the number of coordinates required.

Nodal coordinates can be generated along a straight line described by the
values input on two successive cards. The value of the node number is computed using
the N and NG on the first card to compute the sequence N, N+NG, N+2NG, etc.
Nodes need not be in order.

Columns Description

1to5 Node number, N

6 to 10 Generator increment, NG
11 to 20 First coordinate

21 to 30 Second coordinate

31 to 40 Third coordinate

Terminate with blank card(s).
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Table A.4 Element Data

Element Data~FORMAT (1615)
(must immediately follow an ELEM card)

The element data card contains the element number, material set number
(which also selects the element type, see Table A.5), and the sequence of nodes con-
nected to the element.

Elements must be in order with beam elements being numbered first. If
element cards are omitted the element data will be generated from the previous ele-
ment with the same material number and the nodes all incremented by the LX on the
previous element. Generation to the maximum element number occurs when a blank
card is encountered.

Columns Description

lto5 ’ Element number

6 to 10 Material set number
11to 15 Node 1 number

16 to 20 Node 2 number

21to 25 Generation increment, LX
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Table A.5 Material Property Data

Material Data Sets
(must immediately follow a MATE macro card)

Each material property set also selects the element type which will be used
for the material property data. '

Card (1)-FORMAT (I5,4X,11,17A4)

Columns Description

1to5 Material set number (beam elements numbered first)

6to9 Not used

10 Element type number (beam element = 1, tendon element = 2,

joint element = 3)
11 to 78 Alphanumeric information to be output

Each material Card (1) must be followed immediately by the material prop-
erty data required for the element type being used.

Beam Element Data

Card (2)-FORMAT (3I5)

Columns Description
1tob Number of fibers
6 to 10 Number of stiffness Gaussian points (3)

11to 15 Number of force Gaussian points (3)
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Card (3)-FORMAT (4F10.0)

Columns Description

1to 10 Initial axial strain along the reference axis
11 to 20 Initial curvature at Gaussian point 1

21 to 30 Initial curvature at Gaussian point 2

31 to 40 Initial curvature at Gaussian point 3

Card(s) (4)-FORMAT (I5,2F10.0)

The element allows 4 types of materials to be coded as required in the beam

element subroutine. This will read as many fibers as specified by Card (2).

Columns Description

lto5 Material type of fiber (1 to 4)

6 to 15 Area of fiber

16 to 25 Distance of fiber centroid to reference axis

Tendon Element Data

Card (2)-FORMAT (6F10.0)

Columns

Description

1to 10

11 to 20
21 to 30
31 to 40
41 to 50
51 to 60

First vertical eccentricity
First horizontal eccentricity
Second vertical eccentricity
Second horizontal eccentricity
Cross sectional area of tendon
Initial strain of tendon
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Joint Flement Data

Card (2)-FORMAT (F20.0, 2F10.0)

Columns Description

1to20 Stiffness of joint element

21 to 30 Joint depth in the positive direction

31 to 40 Joint depth in the negative direction (magnitude)
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Table A.6 Boundary Restraint /Joint Specification Data

Boundary Condition/Joint-Specification Cards-FORMAT (1615)
(must immediately follow 2 BOUN macro card)

For each node which has at least one degree of freedom, DOF, with a spec-
ified displacement or is a final joint node, a card must be input. The convention used
is:

-1 no restraint, final joint node, force specified (located in columns 16 to 20);

0  no restraint, force specified; and

1 restrained, displacement specified,

where values of force or displacement input in FORC (Table A.7). Only
Joint specification can be generated.

Columns Description
l1to5 Node number
6 to 10 Generation increment
11 to 15 DOF 1 Code
16 to 20 DOF 2 Code
21 to0 25 DOF 3 Code

Terminate with blank card(s).
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Table A.7 Nodal Force Boundary Value Data

Force/Displacement Cards
(must immediately follow a FORC macro card)

Card(s) (1)-FORMAT (215, 7F10.0)

For each node which has a nonzero nodal force or displacement a force card
must be input or generated. Generation is the same as for coordinate data (see Table
A.3). The value specified is a force if the corresponding restraint code is -1 or 0, and
a displacement if the code is 1. Forces specified at the final joint node override those
specified at the initial joint node. Proportional numbers are specified at locations of
incremental loads to be multiplied later by adequate loads.

Columns Description

ltob Node number

6 to 10 Generation increment

11 to 20 DOF 1 Force (Displacement)
21 to 30 DOF 2 Force (Displacement)
31 to 40 DOF 3 Force (Displacement)

Card (2)-Empty

Card(s) (3)-FORMAT (1615)

Columns Description
1to5b First node number with force to be incremented

6 to 10 Second node number with force to be incremented
' Ete.
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Table A.8 Input Data for Externally Prestressed Segmental Bridge

of Fig. A.1

FEAP * EXTERNA

6
COOR
1 1
3
4 1
6
ELEM
11
3 1
5 2
6 3
7T 4
8 5
BOUN
1 0
4
8
MATE
1 1
14 3
0.
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2 3
1000 000.
3 2
9,
4 2
-4,
5 2
-4,
FORC
1
2
4
5
6
4

END

5

0.
150.
150.
300.

O R0 = CO i b

-

10.
10.
10.
10.
20.
20.
20.
20.
20.
20.
10.
10.

L PRESTRESSED SIMPLE BEAM WITH 2 SEGMENTS **
2 3 2 0

OO O

1 16 1 4

-

vy
oo
crénenen T

PRI NxO

I 1
&1
oron

.00517
.00517
.00517
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global symmetric stiffness matrix. If one wishes to form the right-hand side of the
equations modified for specified displacements, one uses the program instruction,
FORM. the resulting equations are solved using the instruction SOLV. Printed out-
Put can be obtained using the instructions DISP for the displacements and STRE for
element variables such as strains, stresses, and internal forces. These instructions are
sufficient to solve linear problems, that is, the macro instructions

TANG FORM
FORM TANG
SOLV or: SOLV
DISP STRE
STRE DISP

are the required instructions to solve any linear problem. The two modules produce
the same algorithm except that element quantities and nodal displacements are printed
in reverse order.

When multiple load problems are analyzed, the global stiffness matrix is
always the same and need only be formed once. The right-hand side vector changes
and the new displacements need to be computed. The procedure to solve more than
one case at a time requires changing nodal loads and/or specified displacements. The
macro instruction MESH causes the program to enter the data input module again,
and at this stage loads can be changed. Data appears after the macro program instruc-
tions which terminate with the END statement for each case. To avoid repeating the
same block of instructions for every loading case, looping commands are introduced
as the instruction pair

LOOP n

NEXT
which indicate that looping over all instructions between LOOP and NEXT will occur
n times. Hence, the macro program for two load cases is
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TANG
LOOP 2
MESH
FORM
SOLV
DISP
STRE
NEXT
END
FORC
loads for problem 1
END
FORC
loads for problem 2
END

The user should notice that the TANG instruction is executed only once
while the SOLV instruction is executed twice.

A complete list of all available macro instructions are given in Table A.9.
Many other classes of problems can be solved using these instructions.

Nonlinear Problems: Incremental-Load Method

The macro instruction program to solve a nonlinear problem by increment-
ing the load is given below. The program iterates at each step using the modi-
fied Newton-Raphson technique to achieve convergence. Summarized descriptions are

given for some instructions.
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TABLE A.9 LIST OF MACRO PROGRAMMING COMMANDS

The following is a list of macro instruction commands which can be used to
construct solution algorithms. The first instruction must be a card with MACR in
columns 1 to 4.

Columns Columns Description

l1to 4 11 to 15

CONV Displacement convergence test

DISP N Print nodal displacements every N steps in loop

DT v Set time increment to value V

FORM Form right hand side of equations and tests internal

force convergence
LOOP N Loop N times over all instructions between LOOP and
matching NEXT instruction

MESH Input mesh changes (must not change boundary con-)
ditions). Data follows macro program

NEXT End of loop instruction

PROP 1 Input proportional load table (data follows macro pro-
gram)

SOLV Solve tangent equations. Updates nodal displacement

STRE N Print element variables (strains, stresses, internal
forces, joint width, etc.) every N steps in loop

TANG Symmetric tangent stiffness formulation

TIME Advance time by AT value

TOL A% Set solution convergence tolerance to value V
(default value = 1.0 x 10-°)

END End of macro program instructions. Data for program

follows in order of use




DT
PROP

LOOP
TIME
LOOP
TANG
LOOP

FORM

SOLV
CONV
NEXT
DISP
NEXT
STRE
NEXT
END

10
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At=.1

calculates PROP to be multiplied by
input loads to be incremented
increment loop

t=t+ At

modified Newton-Raphson iteration loop
compute K,

tangent stiffness is reformed every 5
iterations

compute right-hand side vector
compute U and U =U+AU

check displacement convergence

print U

print stresses and internal forces

A proportional loading is permitted with

PROP = Al + A2 X t + A3 x (sin(A4 x t + 45))"

where the coefficients are input on a data card following the END macro card according
to Table A.10. The midspan load in Fig. A.1 requires PROP = 1.2 + 5.0 X ¢ where
At =1.0 and ¢ increases from 0.0 to 20.0,
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TABLE A.10 PROPORTIONAL LOAD DATA

PROPORTIONAL LOAD CARD-FORMAT (215,7F10.0)

Columns Description

6 to 10 L

11 to 20 t (min.), minimum time for which PROP is computed
21 to 30 t (max.), maximum time for which PROP is computed
31 to 40 Al

41 to 50 A2

51 to 60 A3

61 to 70 A4

71 to 80 A5




APPENDIX B

GEOMETRY AND STRESSES FOR EXTERNAL
TENDONS IN CHAPTER 5

Figure B.1 provides some of the properties of the prestressing tendons for
the model bridge considered in Chapter 5. The reference axis is located at 6.5 in.
from the top, and a positive vertical direction is selected downward. Y gives the
vertical coordinate of the anchorages or deviation points of the tendons located above
the values of Y'. The transfer forces between consecutive points are given by P,, while
Py gives the tendon forces after losses.

84
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